News & Events

Current News

Patterning Precision with Floating Magnetic Microrobots

Alia Talaat

To help meet the growing demand for miniature tools like micro-catheters and micro-tweezers, scientists at the Hamlyn Centre led by Professor Guang-Zhong Yang have devised a new, more precise system for creating micro-tools that may be used in minimally invasive surgery. Their most recent paper on “Floating magnetic micro-robots for fiber functionalization” is published in the latest issue of Science Robotics this week.

Their simple approach uses a pair of magnetic micro-robots that can grasp and release 2D sheets of micro-electronic circuitry and orient them onto complex 3D fibres – addressing a lack of precision that has previously hindered attempts to build fibre-based robotic tools. While the use of flexible fibres equips micro-tools with the ability to image, sense and handle tiny objects, these tools require other tiny parts like sensors or micro-grippers to function fully, and such additions remain a challenge to implement at a microscopic scale.

Read more.